A Study of the Interactions of NO with Rh/TiO₂ and TiO₂-Promoted Rh/SiO₂

NUTAN K. PANDE AND ALEXIS T. BELL

Department of Chemical Engineering, University of California, Berkeley, California 94720

Received March 22, 1985; revised August 20, 1985

The interactions of NO with Rh/TiO₂ and TiO₂-promoted Rh/SiO₂ were studied by temperatureprogrammed desorption spectroscopy. The room-temperature chemisorption of NO was observed to decrease with increasing catalyst reduction temperature in a manner similar to that found for H₂ and CO. However, the adsorption capacity for NO was always substantially greater than that for H₂ or CO. The suppression of NO, CO, and H₂ chemisorption with increasing catalyst reduction temperature is attributed to the blockage of Rh adsorption sites by TiO_x moieties transferred from the support. The higher adsorption capacity for NO relative to H₂ and CO is ascribed to NO adsorption at anionic defects on portions of TiO₂ adjacent to Rh particles. NO desorption is accompanied by decomposition to form N₂O and N₂, the extent of decomposition increasing with decreasing Rh dispersion. While N₂O appears to be formed on the exposed surfaces of Rh particles, N₂ formation occurs on both Rh particles and the surface of the support. @ 1986 Academic Press, Inc.

INTRODUCTION

The activity of Group VIII metals for the synthesis of hydrocarbons from CO and H₂ has been shown to be significantly higher when these metals are supported on titania, rather than on silica or alumina (1-8). A similar enhancement in activity has also been reported recently for NO reduction with either H_2 or CO (9). In both cases, the increased activity of the titania-supported metal has been ascribed to the occurrence of metal-support interactions. While the exact nature of these interactions is not yet fully understood, there is an increasing body of evidence indicating that the changes in catalytic properties of small metal particles are due to a decoration of their surface by TiO_r moieties transferred from the TiO_2 support (10-19). These species physically block adsorption sites and may alter the adsorptive properties of the uncovered metal sites.

A large number of studies have been reported concerning the adsorption of H_2 and CO on titania-supported Group VIII metals (20-23), but relatively little is known about the interactions of NO with such catalysts. Recently, Fang and White (24) examined

NO chemisorption on Pt/TiO₂ using infrared volumetric spectroscopy and chemisorption. They observed that NO chemisorption is suppressed following high-temperature reduction of the catalyst. This phenomenon was attributed to a transfer of electronic charge from the support to the Pt. In the present study, temperatureprogrammed desorption spectroscopy has been used to investigate the interactions of NO with Rh/TiO₂ and TiO₂-promoted Rh/SiO₂. These catalysts are of considerable interest since they exhibit very high activity for NO reduction (9, 25). The results of this study show that while the chemisorption of NO decreases with catalyst reduction temperature in a manner similar to that for H_2 and CO chemisorption. the amount of NO adsorbed is always greater than that of H_2 or CO. This and other features of NO adsorption and desorption are attributed to the interactions of NO with Rh, TiO_r moieties covering the Rh particles, and the TiO₂ support itself.

EXPERIMENTAL

Catalyst Preparation

The supported catalysts were prepared

using RhCl₃ · $3H_2O$ (Aldrich Chemicals) as the metal precursor. The support materials used were Cab-O-Sil HS-5 Silica (BET surface area, 300 m²/g) and Degussa P25 titania (BET surface area, 50 m²/g). Samples of approximately 4 wt% Rh were prepared by incipient wetness impregnation of the support with a solution of RhCl₃ dissolved in deionized water. In addition, a sample of 0.5% Rh/TiO₂ was prepared by ion exchange using the method of Resasco and Haller (26). Following introduction of RhCl₃, each sample was dried overnight in a vacuum oven at 338 K, and calcined in a 21% O₂/He mixture at 773 K for 1 h.

A TiO₂-promoted Rh/SiO₂ sample was prepared in the following manner. A 4 wt% Rh/SiO₂ catalyst, prepared by impregnation of SiO₂ with a solution of RhCl₃, was dried but not calcined. This material was then impregnated with $Ti(OCH_3)_4$ (Alfa Chemicals) dissolved in 1 N HCl, by dropwise addition to the point of incipient wetness. The amount of Ti(OCH₃)₄ added corresponded to a Ti weight loading of 5%. A sample of TiO₂-promoted Rh black was prepared in a similar manner. The amount of $Ti(OCH_3)_4$ added to the Rh black (Aldrich Chemicals, 99.99% Rh), corresponded to a Ti weight loading of 1%. Both samples were dried overnight in a vacuum oven at 338 K, and then calcined in a $21\% O_2/He$ mixture for 1 h. The TiO₂-promoted Rh black sample was calcined at 573 K and the TiO₂-promoted Rh/SiO₂ sample was calcined at 773 K.

Table 1 lists the Rh content and dispersion of Rh for all of the samples. The Rh weight loading of each sample was deter-

TAI	BLE	Ξ1

Metal Content and Dispersion of Supported-Rh Catalysts

Catalyst	% Rh	Dispersion
Rh/SiO ₂	4.60	0.55
Rh/TiO ₂	4.33	0.26
Rh/TiO ₂	0.51	0.55
TiO ₂ -Promoted Rh/SiO ₂	4.70	0.25

mined by X-ray fluorescence. The Rh dispersion was measured by volumetric chemisorption of H_2 at room temperature on samples which were reduced overnight at 573 K.

Temperature-Programmed Desorption, Reduction, and Oxidation

The interaction of nitric oxide with the Rh catalysts was studied by temperatureprogrammed desorption. The apparatus used for these experiments has been described previously (27). A 30-mg sample of the catalyst was placed in a quartz microreactor and reduced in H₂ for at least 2 h at a temperature in the range of 523-773 K. The catalyst was then evacuated and ramped under vacuum to 823 K, to remove any adsorbed hydrogen. The sample was subsequently cooled under vacuum to room temperature. The microreactor was repressurized with helium, and NO was pulsed to the reactor to achieve saturation coverage. The catalyst was then ramped to 823 K at a linear heating rate of 1 K/s in a helium stream flowing at 50 cm³/min. This procedure was repeated for successively higher reduction temperatures, and from the measured amount of NO, N₂O, and N₂ desorbed, the initial coverage of the adsorbate was determined as a function of catalyst reduction temperature. The above procedure was followed on all of the samples with the exception of the Rh black powder and the TiO₂-promoted Rh black powder. Due to concern that the unsupported metal powders would sinter if evacuated to 823 K, the powders were evacuated at the sample reduction temperature and then cooled under vacuum to room temperature.

Temperature-programmed reduction was performed on the samples after calcination in a 21% O₂/He mixture at 623 K for 2 h. The sample was cooled to room temperature and a mixture of 1000 ppm H₂/He was flowed through the reactor at 50 cm³/min. The sample was then ramped to 823 K at a linear heating rate of 1 K/s and the rate of H₂ consumption was monitored.

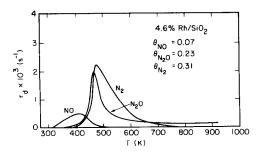


FIG. 1. NO TPD spectrum for 4.6% Rh/SiO₂ after reduction at 573 K.

Temperature-programmed oxidation was performed on the samples after reduction in H₂ at 573 K overnight. The sample was cooled to room temperature and a mixture of 1000 ppm O_2 /He was flowed through the reactor at 50 cm³/min. The sample was then ramped to 823 K at a linear heating rate of 1 K/s and the rate of O_2 consumption was monitored.

FIG. 2. NO TPD spectra for TiO_2 support reduced at 523 K (a), 773 K (b), and 1073 K (c).

RESULTS

4.6% Rh/SiO₂ Catalyst

The NO desorption spectrum for the Rh/ SiO₂ catalyst reduced at 573 K is shown in Fig. 1. The appearance of N₂O and N₂, in addition to NO, is indicative of NO decomposition. Single peaks are observed for NO and N₂O, centered at 425 and 475 K, respectively. The spectrum for N₂ is comprised of two components, a narrow peak at 475 K and a broad peak centered at 550 K. The initial coverage of NO was determined from the total quantity of nitrogen containing products desorbed and corresponds to $\theta_{NO}^{o} = 0.61$.

TiO₂ Support

TPD spectra taken after reduction of the TiO₂ support at 523, 773, and 1073 K are shown in Fig. 2. The spectrum obtained following reduction at 523 K shows (Fig. 2a) peaks for both NO and N₂O. The presence of N₂O is indicative of NO disproportionation. Two broad peaks are observed for NO, centered at 425 and 675 K. N₂O formation reaches a maximum rate of 660 K, but a small N₂O peak centered at 333 K is also apparent. When the support reduction temperature is increased from 523 to 773 K

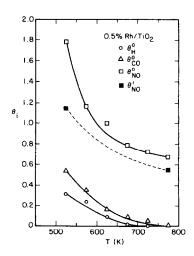


FIG. 3. Effect of catalyst reduction temperature on the adsorption capacity of H_2 , CO and NO for 0.5% Rh/TiO₂.

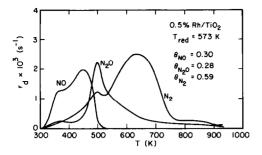


FIG. 4. NO TPD spectrum for 0.5% Rh/TiO₂ after reduction at 573 K.

(Fig. 2b), the amount of NO adsorbed decreases from 1.73×10^{-5} to 3.24×10^{-6} mol/g. The TPD spectrum is also altered by reduction at 773 K. As seen in Fig. 2c, nearly equivalent peaks for NO, N₂O, and N₂ are now observed near 353 K. A smaller N₂O peak still appears though at 575 K. Raising the reduction temperature to 1073 K reduces the uptake of NO to 2.05×10^{-6} mol/g. In this case, the TPD spectrum shows no evidence for desorbed NO, and N₂O and N₂ are the only nitrogen-containing products observed. The temperatures at maximum rate of N₂O and N₂ formation are 353 and 385 K, respectively.

0.5% Rh/TiO₂ Catalyst

The total uptake of NO on 0.5% Rh/TiO₂ was determined by integration of the spectra for nitrogen-containing products produced during temperature-programmed desorption. The results are shown in Fig. 3, as a function of catalyst reduction temperature. The dashed curve represents a correc-

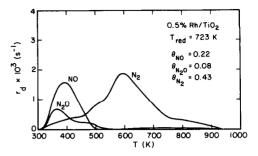


FIG. 6. NO TPD spectrum for 0.5% Rh/TiO₂ after reduction at 723 K.

tion of the total NO uptake to account for NO adsorbed on the support itself. Curves for the uptakes of H₂ and CO, reported previously (11), are also shown for comparison. It is immediately evident that while the uptakes of NO, CO, and H₂ all decrease in a similar manner with increasing catalyst reduction temperature, the uptake of NO is substantially greater than that of CO and H₂ in all cases. This distinctive feature of NO chemisorption is evident most clearly for reduction at 773 K, at which point H₂ and CO chemisorption are completely suppressed but 0.55 of a Rh monolayer of NO is still chemisorbed.

TPD spectra taken after reduction of the 0.5% Rh/TiO₂ sample at 573, 673, 723, and 773 K are shown in Figs. 4 through 7. Peaks for NO, N₂O, and N₂ are observed in each of these figures. For reduction at 573 K, two NO peaks are seen, centered at 353 and 458 K. The N₂O spectrum shows a small peak at 353 and a large peak at 493 K, which has a tail extending to higher temperatures. The

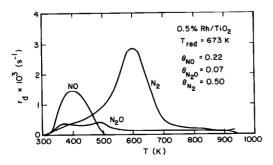


FIG. 5. NO TPD spectrum for 0.5% Rh/TiO₂ after reduction at 673 K.

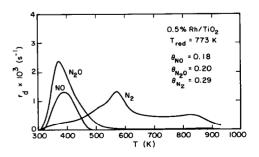


FIG. 7. NO TPD spectrum for 0.5% Rh/TiO₂ after reduction at 773 K.

 N_2 spectrum exhibits two small peaks at 353 and 823 K, a medium-sized peak at 493 K, and a large, broad peak at 633 K. As the catalyst reduction temperature is increased, the two NO peaks coalesce, the N_2O peak at 493 K diminishes while that at 353 K grows, and the center of mass of the N_2 spectrum shifts to higher temperatures.

The recovery of NO adsorption capacity was also examined. After reduction of the catalyst at 773 K, it was stored in a dessicator at room temperature for over a month. The sample was then reduced at 523 K. The TPD spectrum for adsorbed NO is shown in Fig. 8. The positions, shapes, and relative intensities of all of the features seen in Fig. 8 bear much more resemblance to those shown in Fig. 4, than to those in Fig. 7. It is also evident from the tabulated data that the NO adsorption capacity of the hightemperature reduced sample was partially restored by long-term exposure to air.

4.3% Rh/TiO₂ Catalyst

The desorption of NO from the 4.3% Rh/ TiO₂ catalyst was studied as a function of catalyst pretreatment. This sample was not reduced at successively higher reduction temperatures, but instead was cycled from high-temperature to low-temperature reduction with intermediate calcination at 773 K. The purpose of this procedure was to determine if calcination of the catalyst would cause it to regain its initial capacity for NO adsorption. Table 2 summarizes the results as a function of catalyst pretreat-

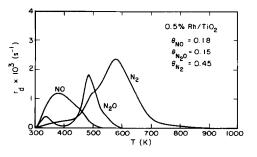


FIG. 8. NO TPD spectrum for 0.5% Rh/TiO₂ initially reduced at 773 K, exposed to air at room temperature for one month, and then reduced at 523 K.

TABLE 2

Effect of Pretreatment on NO Adsorption Capacity for 4.3% Rh/TiO₂

Pretreatment	
Reduced at 573 K	1.15
Reduced at 673 K	0.45
Calcined at 773 K (1 h) and reduced at 623 K	0.48
Calcined at 773 K (1 h) and reduced at 573 K	0.74

ment. It is evident that after high-temperature reduction, pretreatment of the catalyst by high-temperature calcination and subsequent reduction at low temperature only partially restores the NO chemisorption capacity. The NO desorption spectra for the 4.3% Rh/TiO₂ catalyst taken after reduction at 573 and 673 K are shown in Figs. 9 and 10, respectively. The N₂ peak tails out to higher temperatures and the N₂O peak desorption is shifted to lower temperatures when the reduction temperature is raised from 573 to 673 K. This is the same trend that was observed for the 0.5% Rh/TiO₂ catalyst.

TiO₂-Promoted 4.7% Rh/SiO₂ Catalyst

The NO adsorption capacity for the TiO₂promoted 4.7% Rh/SiO₂ catalyst is shown in Fig. 11 as a function of catalyst reduction temperature. The uptakes of H₂ and CO reported previously (11) are also shown. The change in adsorptive capacity with reduction temperature for this catalyst is very

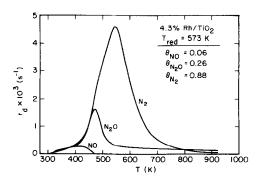


FIG. 9. NO TPD spectrum for 4.3% Rh/TiO₂ after reduction at 573 K.

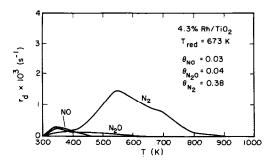


FIG. 10. NO TPD spectrum for 4.3% Rh/TiO₂ after reduction at 673 K.

similar to that seen in Fig. 3 for 0.5% Rh/ TiO₂. Here again, the capacity for NO adsorption decreases with increasing reduction temperature, but is always larger than the adsorption capacity for CO or H₂.

Figure 12 shows the NO TPD spectrum for the TiO₂-promoted 4.7% Rh/SiO₂ catalyst after reduction at 523 K. Most of the adsorbed NO desorbs as N₂ in two overlapping peaks centered at 498 and 548 K. Small peaks for NO and N₂O are also seen at 423 and 483 K, respectively. As the catalyst reduction temperature increases, the peaks for NO and N₂O disappear completely, and the N₂ spectrum extends out to higher and higher temperatures. These trends are clearly seen in Fig. 13.

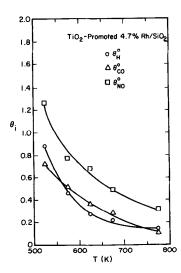


FIG. 11. Effect of catalyst reduction temperature on the adsorption capacity of H_2 , CO, and NO for TiO₂-promoted 4.7% Rh/SiO₂.

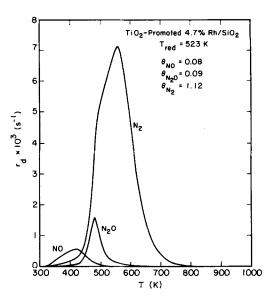


FIG. 12. NO TPD spectrum for TiO_2 -promoted 4.7% Rh/SiO₂ after reduction at 523 K.

Rh Black and TiO₂-Promoted Rh Black

The interactions of NO with Rh black and TiO₂-promoted Rh black were also investigated. TPD spectra taken following adsorption of NO are shown in Fig. 14. In contrast to the supported-Rh catalysts, N₂ is the only product observed. For Rh black, the N₂ peak is at 453 K but is shifted to 753 K for TiO₂-promoted Rh black. The amount

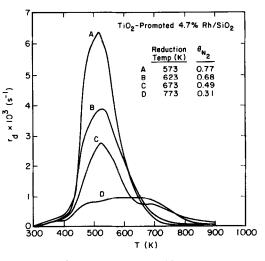


FIG. 13. NO TPD spectra for TiO₂-promoted 4.7% Rh/SiO₂ after reduction at 573 K (A), 623 K (B), 673 K (C), and 773 K (D).

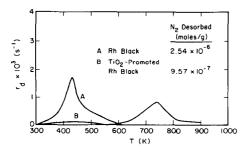
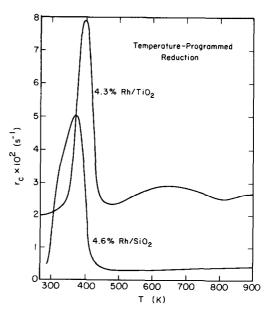


FIG. 14. NO TPD spectra for Rh black (A) and TiO_2 promoted Rh black (B) after reduction at 523 K.

of NO adsorbed on Rh black is 2.54×10^{-6} and 9.57×10^{-7} mol/g for TiO₂-promoted Rh black. Since both samples were reduced at the same temperature, 523 K, the observed differences in N₂ peak position are directly due to the influence of TiO₂ on the Rh-black particles.


Temperature-Programmed Reduction and Oxidation

Temperature-programmed reduction of the TiO_2 support showed no evidence for H_2 uptake over the entire temperature range. Temperature-programmed oxidation was performed on the TiO₂ support after reduction in H₂ overnight at 523 K. Oxygen consumption was noticeable starting at 473 K and continued up to 823 K. Since it was suspected that this oxygen uptake might be due to oxygen deficiencies in the TiO₂ lattice, temperature-programmed oxidation was performed on an untreated TiO₂ sample. Oxidation was observed starting at 473 K and continued up to 823 K; the support consumed 1.5 \times 10⁻⁵ mol O₂/g TiO₂ (1.2 \times 10^{-3} mol O₂/mol TiO₂). It should be noted that O₂ consumption was measured only up to 823 K. O₂ was still being consumed at this temperature. These results indicate that the untreated TiO_2 support is not fully oxidized.

Figure 15 shows the results for temperature-programmed reduction of the 4.6% Rh/ SiO₂ sample and the 0.5% Rh/TiO₂ sample. A single sharp H₂ consumption peak is seen at 373 K for the Rh/SiO₂ sample. Prior to temperature-programmed reduction of the Rh/SiO₂ catalyst, the sample was calcined in a 21% O₂/He mixture for 2 h at 623 K. Under these conditions, all of the rhodium should be converted to rhodium oxide. If it is assumed that because of the rapid heating rate (1 K/s) during temperature-programmed reduction only the surface of the oxide particles are reduced and that an H atom remains adsorbed on each surface Rh atom, the following stoichiometry will be obeyed:

$$Rh_2O_3 + 4H_2 \rightarrow 2Rh - H + 3H_2O.$$

Thus the H₂ consumption should be 2H₂ per Rh surface site. The sample used for the temperature-programmed reduction experiment contains 7.28×10^{-6} mol of surface Rh sites. So theoretically, the H₂ consumption should be 1.46×10^{-5} mol H₂. The experimentally measured H₂ consumption was 1.48×10^{-5} mol H₂. The excellent agreement between these latter two figures indicates that the sharp H₂ consumption peak corresponds to reduction of surface rhodium oxide to rhodium metal. A sharp H₂ consumption peak is also observed for the Rh/TiO₂ sample, this time at 393 K.

F1G. 15. H_2 consumption during TPR of calcined 4.6% Rh/SiO₂ and 0.5% Rh/TiO₂.

However, in addition, there is a broad H_2 consumption peak starting at 473 K and centered at about 673 K. Assuming that the first low-temperature peak corresponds to reduction of surface rhodium oxide, the theoretical H₂ consumption should be 8.34 \times 10⁻⁶ mol H₂. The measured H₂ consumption is 7.37×10^{-6} mol H₂, in reasonable agreement with that predicted. The broad, high-temperature H₂ consumption peak, not observed for the Rh/SiO₂ catalyst, is assumed to be due to reduction of the TiO_2 support. This peak corresponds to a H_2 consumption of 0.84 equivalents of a Rh monolayer. It should be noted that there was no H₂ consumption for temperatureprogrammed reduction of the TiO₂ support by itself, so it appears that the presence of the Rh metal is essential for reduction of the TiO₂ support. In this connection, it is important to recognize that the transmission electron microscopy studies, selectedarea electron diffraction and X-ray diffraction have confirmed that the support of a Rh/TiO₂ catalyst does not undergo bulk reduction for temperatures up to 1073 K (11). Thus, it appears that the role of the Rh metal particles is to produce a source of H_a which can then reduce TiO_2 in the vicinity of the metal particles, thereby forming TiO_x species.

Temperature-programmed oxidation of the Rh/SiO_2 sample showed no oxygen consumption over the entire temperature range, but it was noticed that the oxygen signal dropped considerably when a 1000

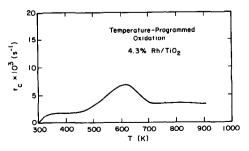


FIG. 16. O_2 consumption during TPO of reduced 0.5% Rh/TiO₂.

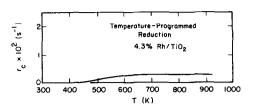


FIG. 17. H₂ consumption during TPR for 4.3% Rh/TiO₂ following NO TPD.

ppm O₂/He mixture was flowed over the reduced catalyst at room temperature. It is assumed that the reduced metal takes up a monolayer of oxygen at room temperature and that there is no further oxidation. In contrast, the temperature-programmed oxidation of the 0.5% Rh/TiO₂ sample showed O_2 consumption at room temperature as well as during the ramp in 21% O₂/He. Figure 16 shows the resulting O_2 consumption spectrum. There is a broad peak centered at 623 K and O_2 is still being consumed even at 823 K. The measured O_2 consumption was 1.56×10^{-5} mol O₂/g catalyst. This corresponds closely to the O_2 uptake of the TiO_2 support in the absence of Rh.

Temperature-programmed reduction experiments were also used to verify that oxygen released during the temperature-programmed desorption of nitric oxide from a Rh/TiO₂ catalyst is taken up by partially reduced titania. Figure 17 shows the results for temperature-programmed reduction of the 4.3% Rh/TiO₂ catalyst following a NO TPD experiment. A large H_2 consumption peak is observed at room temperature, which is attributed to the reduction of O atoms on the Rh metal at room temperature. In addition, as shown in Fig. 17, a broad H_2 consumption peak is evident starting at 473 K. The area under this peak corresponds to 0.75 equivalents of a Rh monolayer. The results of temperature-programmed reduction experiments on prereduced Rh/TiO₂ have shown that there is no further reduction, thus it is concluded that the peak observed in Fig. 17 is due to the reduction of titania which was oxidized during the NO TPD process.

DISCUSSION

Unsupported Rh

The interactions of NO with unsupported Rh have been investigated previously by a number of authors (28–35). The results obtained with polycrystalline samples and with various single crystal surfaces are qualitatively similar. For low coverages $(\theta_{\rm NO} \approx 0.5)$, NO adsorbs dissociatively and the only product observed in the TPD spectra is N_2 . At higher NO coverages, a small amount of NO is observed to desorb prior to the formation of N_2 . The N_2 signal is composed of two overlapping peaks. It has been proposed that the low-temperature peak is due to the process $N_a + NO_a \rightarrow N_2$ $+ O_a + S$, whereas the high-temperature peak is due to the process $2N_a \rightarrow N_2 + 2S$. With the exception of Castner and Somorjai (29), none of the authors working with unsupported Rh have reported the formation of N₂O. Castner and Somoriai (29) observed the appearance of a small amount of N₂O in studies carried out with Rh (331) and $Rh(S) - [6(111) \times (100)]$ surfaces. It was proposed that N₂O might form via reactions such as $2NO_a \rightarrow N_2O + O_a + S$ and $N_a + NO_a \rightarrow N_2O + 2S.$

The shape of the N_2 spectrum for Rh black presented in Fig. 14 is quite similar to that reported by Campbell and White (34) for polycrystalline Rh foil. The absence of NO or N_2O during temperature-programmed desorption suggests that the dissociation of NO on Rh black is very efficient.

Rh/SiO_2

The TPD spectrum for 4.6% Rh/SiO₂ presented in Fig. 1 is similar to that reported by Chin and Bell (36) for a 5% Rh/SiO₂ catalyst. The principal difference is that Chin and Bell (36) observed a higher proportion of the adsorbed NO (~85%) decomposed to N₂ upon elevation of the catalyst temperature. This difference can be ascribed to the much lower Rh dispersion (16.4%) of the catalyst used by Chin and Bell compared to that used in the present studies (55%). As will be discussed below for Rh/TiO₂, the fraction of adsorbed NO decomposing to N₂ increases with decreasing dispersion. Further supporting this conclusion is the observation that on Rh black, which has a dispersion of 0.35%, all of the adsorbed NO decomposes to N₂.

In their study, Chin and Bell (36) demonstrated that the TPD spectrum for NO desorption and decomposition can be interpreted using the following reaction sequence:

- (1) $NO_a \rightleftharpoons NO + S$
- (2) $NO_a + S \rightarrow N_a + O_a$
- (3) $NO_a + N_a \rightarrow N_2O + 2S$

$$(4) NO_a + N_a \rightarrow N_2 + O_a + S$$

(5) $2Na \rightarrow N_2 + 2S$

Rate parameters for each elementary steps were determined by fitting simulated TPD spectra to those observed experimentally.

Structure and Composition of Rh/TiO₂ and TiO₂-Promoted Rh/SiO₂

The physical and chemical characteristics of titania-supported Group VIII metals have been studied extensively with the aim of explaining what causes the suppression of H₂ and CO chemisorption following hightemperature reduction of such catalysts (10-19, 22, 37-40). The most convincing interpretation is that derived from AES observations which suggests that the loss of chemisorption capacity is due to the decoration of the supported-metal crystallites by TiO_r moieties. These species modify the metal surface not only by physical blockage but also through a change of the electronic properties of metal atoms near the TiO_x moieties (10-19).

Recent electron microscopy studies of Rh/TiO₂ and TiO₂-promoted Rh/SiO₂, reported by Singh *et al.* (11), lend further support to the decoration model. Regions of amorphous titania were observed at the periphery of Rh particles supported on TiO₂, following high-temperature reduction. Likewise, micrographs of TiO₂-promoted Rh/SiO₂ showed evidence of crystal-

line TiO₂ platelets after such catalysts were reduced at 773 K. Platelet formation appeared to be nucleated by the Rh particles and did not occur in the absence of the metal. Defocussing experiments confirmed that the TiO₂ platelets were situated on top of the Rh particles. Based on these observations it was concluded that the suppression of H₂ and CO chemisorption for Rh/ TiO₂ and TiO₂-promoted Rh/SiO₂ is due to the deposition of an amorphous layer of TiO_x over the particles, which upon heating in H₂ is converted to crystalline TiO₂.

While studies by Baker and coworkers (10, 37-40) have indicated that TiO₂ undergoes partial reduction to Ti_4O_7 in the presence of supported Group VIII metals, selected-area electron diffraction and X-ray diffraction of the catalysts used in this study showed no evidence for such transformations (11). In fact, the only changes seen were a gradual conversion of anatase to rutile when the reduction temperature was 1073 K. The TPR spectra presented in Fig. 15 show, however, that a portion of the support does lose oxygen upon reduction above 500 K. Since no loss of oxygen was observed from TiO_2 , it is concluded that Rh is required to promote the reduction of TiO_2 , in agreement with previous studies (37, 41-44). The portion of the TiO₂ undergoing reduction cannot be defined unambiguously. We propose, however, that it is the TiO_x moieties covering the Rh particles or portions of TiO₂ adjacent to the Rh particles. Elevation of the reduction temperature, thus, appears to have two effects one is to increase the coverage of Rh particles by TiO_x and the second is to increase the extent of reduction of the TiO_x species in the proximity of the Rh particles.

NO Adsorption on TiO₂

The TPD spectra in Fig. 2 clearly demonstrate that NO will adsorb to a small degree on TiO₂ in the absence of Rh. The influence of TiO₂ reduction temperature on the distribution of products formed during desorption provides indirect evidence of a change in the composition of the support surface, even though no bulk reduction occurs (11).

When the TiO_2 is reduced at 773 and 1073 K, the desorption of N₂O and N₂ occurs at much lower temperatures than when the support is reduced at 523 K. It is also evident that the fraction of adsorbed NO appearing as N₂O and N₂ increases with increasing reduction temperature. These observations suggest that a small amount of the TiO₂ surface does undergo reduction in H₂ even in the absence of Rh, and that dissociative adsorption of NO can occur at these partially reduced centers.

NO Adsorption on Rh/TiO₂ and TiO₂-Promoted Rh/SiO₂

The data presented in Figs. 3 and 11 demonstrate that the room-temperature chemisorption of NO on 0.5% Rh/TiO₂ and TiO₂promoted 4.7% Rh/SiO₂ decreases as the catalyst reduction temperature increases. However, the amount of NO adsorbed always exceeds the amount of H_2 or CO chemisorbed by a fixed quantity. This pattern can be explained by assuming that NO adsorbs both on the exposed portions of Rh crystallites (i.e., those not covered by TiO_x) and on partially reduced titania present in the vicinity of the Rh particles. Since the amount of NO absorbed in excess of CO or H_2 is greater for the 0.5% Rh/TiO₂ catalyst than the TiO₂-promoted 4.7% Rh/SiO₂ catalyst, the concentration of reduced titania must be greater for the former catalyst. It should also be noted that NO adsorption on the TiO_x moieties covering the Rh particles does not appear to occur, for if it did, the extent of decrease in NO adsorption with reduction temperature would not be as large as that seen in Figs. 3 and 11.

The interactions of NO with silica- and titania-supported Rh are quite different. For example, while the 4.6% Rh/SiO₂ and the 0.5% Rh/TiO₂ samples have the same dispersion, the fraction of nitrogen containing species desorbed as NO, following reduction at 573 K, is much larger for the titania-supported catalyst. The position and

shapes of the N_2 spectra are also different for the two catalysts. For 0.5% Rh/TiO₂, and N_2 spectrum exhibits large peaks at 493 and 633 K and smaller peaks at 353 and 823 K. The N₂ spectrum for 4.6% Rh/SiO₂ has a large peak at 475 K which overlaps a broad peak centered at about 550 K. The absence of N_2 peaks above 573 in the spectra for Rh black and Rh/SiO₂ reported here, strongly suggests that the N_2 peaks appearing at 633 and 823 K in the spectrum of 0.5% Rh/TiO₂ are due to the desorption of nitrogen atoms attached to Ti ions rather than Rh atoms. Moreover, it is conceivable that the 633 K peak may be associated with Ti ions in contact with Rh surface atoms and the 823 K peak, with Ti ions not in contact with Rh surface atoms. The attribution of these two high-temperature peaks to nitrogen atom adsorption on Ti ions is supported by the shift in the N₂ peak for Rh black from 453 to 753 K when the sample is promoted with TiO_2 (see Fig. 14). By contrast to what is observed for N_2 , the spectra for N_2O produced over 4.6% Rh/SiO₂ and 0.5% Rh/ TiO_2 are remarkably similar in position and shape. This suggests that most of the N_2O is produced on the Rh particles for both catalysts.

Figures 4–7 demonstrate that the spectra of nitrogen-containing products observed for 0.5% Rh/TiO₂ change substantially as the catalyst reduction temperature increases. For a reduction temperature of 573 K, the NO spectrum is made up of two overlapping peaks centered at 353 and 458 K. With increasing reduction temperature, the intensity of the second peak diminishes somewhat, while that of the first remains nearly constant. Inspection of Figs. 1 and 2 suggests that the peak at 458 K in Fig. 4 is attributable, at least in part, to NO desorbing from Rh particles, whereas the peak at 353 K is due primarily to NO desorption from the TiO₂ support. The decrease in intensity of the peak at 458 K with increasing reduction temperature can then be ascribed to a progressive increase in the fraction of Rh particles covered by TiO_x moieties.

The N₂O spectrum seen in Fig. 4 has a small peak at about 353 K and a large, welldefined peak at 493 K. As the reduction temperature increases, the high-temperature feature rapidly disappears, whereas the low-temperature feature grows. This is particularly evident for reduction temperatures above 700 K. The coincidence of the N₂O and NO peaks near 353–373 K, following high-temperature reduction of 0.5% Rh/ TiO_2 is similar to that observed in the spectra of TiO₂ (Fig. 2) suggesting that the N_2O peak at 353 K is due to N₂O formation on the partially reduced support. As noted above, the similarity of the positions and shapes of the N₂O peak seen at 475-493 K in the spectra of 4.6% Rh/SiO₂ and 0.5% Rh/TiO₂ indicates that this feature arises from the process $N_a + NO_a \rightarrow N_2O + 2S$ occurring on the surface of Rh particles. The decrease in intensity of the N₂O peak with increasing reduction temperature observed in the spectra for 0.5% Rh/TiO₂ is ascribed to the progressive coverage of the Rh particles by TiO_r .

147

Two principal changes occur in the N_2 spectrum with increasing reduction temperature. The peak at 573 K decreases, while that at 823 K increases in intensity. As discussed earlier, the first of these peaks is attributed to N₂ formation involving species adsorbed on the Rh particles, whereas the second peak is attributed to N₂ formation involving N atoms attached to Ti cations. The absence of the 823 K peak from the spectrum observed for reduced TiO₂ (Fig. 2) suggests that the Ti cations may be those associated with TiO_x moieties covering the Rh particles. Such an interpretation would be consistent with the change in relative intensity of the peaks at 573 and 823 K with increasing reduction temperature.

The spectra of nitrogen-containing products observed for 4.3% Rh/TiO₂ are qualitatively similar to those observed for 0.5%Rh/TiO₂. The primary difference is that a smaller fraction of the initially adsorbed NO is released as NO. This would suggest that more of the NO dissociates upon adsorption on 4.3% Rh/TiO₂ than on 0.5% Rh/ TiO₂. The most plausible interpretation is that the extent of NO dissociation increases with decreasing Rh dispersion. As shown in Table 1, the dispersion of 0.5% Rh/TiO₂ is 55%, while that for 4.3% Rh/TiO₂ is 26%.

The spectra obtained for TiO₂-promoted 4.7% Rh/SiO₂ very closely resemble the spectra for 4.3% Rh/TiO₂ but differ significantly from those for 4.6% Rh/SiO₂. This gives strong evidence of the influence of TiO₂ moieties interacting with Rh on the adsorption/desorption behavior of NO. The low proportion of nitrogen-containing products appearing as NO or N₂O again suggests that a substantial portion of the NO adsorbed initially is dissociated. This interpretation is supported by the prominence of the N_2 peak at 548 K relative to that at 498 K. As discussed earlier, the first of these peaks is due to $2N_a \rightarrow N_2 + 2S$, whereas the latter is due to $N_a + NO_a \rightarrow N_2 + O_a + S$. Once again, the change in the shape of the N₂ spectrum with increasing catalyst reduction temperature can be attributed to a progressive decoration of the Rh particles by TiO_r.

The suppression of NO chemisorption following high-temperature reduction of Rh/TiO₂ catalysts can be partially restored by oxidation of the catalyst (see Table 2). Moreover, comparison of Figs. 4 and 8 demonstrates that room-temperature oxidation of Rh/TiO₂ after reduction at 773 K results in a restoration of the TPD spectrum observed upon reduction at 573 K. The mechanism by which the adsorption capacity is partially restored via oxidation has not yet been established. One possibility is that upon raising the oxygen content of the TiO_r moieties covering the Rh particles, these structures no longer wet the Rh particles as effectively. Contraction of the TiO_x moieties or their migration back to the support would result in a large fraction of the metal surface being exposed.

CONCLUSIONS

The results of the present study demon-

strate that NO chemisorption is suppressed with increasing catalyst reduction temperature for Rh/TiO₂ and TiO₂-promoted Rh/ SiO_2 . While this trend is similar to that observed for H₂ and CO chemisorption, the amount of NO adsorbed is significantly larger than the amount of H₂ or CO adsorbed. The suppression of NO chemisorption with increasing reduction temperature is believed to result from physical blockage of rhodium surface sites by TiO_x moieties transferred from the support. Such structures also block the chemisorption of CO and H_2 . The higher adsorption capacity for NO relative to CO and H₂ is ascribed to NO adsorption on partially reduced sites present on portions of titania immediately adjacent to rhodium crystallites. These adsorption sites are formed by spillover of atomic hydrogen from rhodium crystallites onto the support and subsequent reduction of a portion of the support surface.

Desorption of NO from Rh/TiO_2 and TiO_2 -promoted Rh/SiO_2 is accompanied by decomposition to form N_2O and N_2 . The extent of decomposition increases with decreasing Rh dispersion. While N_2O appears to be formed primarily on the exposed surfaces of rhodium particles, N_2 formation takes place on both the rhodium particles and the support. The latter process is believed to involve the recombination of nitrogen atoms bound to titanium ions.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation through Grant CEP82-16537.

REFERENCES

- 1. Solymosi, F., Tombacz, I., and Kocsis, M., J. Catal. 75, 78 (1982).
- Katzer, J. R., Sleight, A. W., Gajardo, P., Michel, J. B., Gleason, E. F., and McMillan, S., Faraday Discuss. Chem. Soc. 72, 121 (1982).
- 3. Bracey, J. D., and Burch, R., J. Catal. 86, 384 (1984).
- Ozdogan, S. Z., Gochis, P. D., and Falconer, J. L., J. Catal. 83, 257 (1983).

- 5. Vannice, M. A., and Garten, R. L., J. Catal. 66, 242 (1980).
- Ryndin, Y. A., Hicks, R. F., and Bell, A. T., J. Catal. 70, 287 (1981).
- 7. Burch, R., and Flambard, A. R., J. Catal. 78, 389 (1982).
- Vannice, M. A., and Garten, R. L., J. Catal. 56, 236 (1979).
- 9. Pande, N. K., and Bell, A. T., Appl. Catal., in press.
- Simoens, A. J., Baker, R. T. K., Dwyer, D. J., Lund, C. F. K., and Madon, R. J., *J. Catal.* 86, 359 (1984).
- Singh, A. K., Pande, N. K., and Bell, A. T., J. Catal. 94, 422 (1985).
- Santos, J., Phillips, J., and Dumesic, J. A., J. Catal. 81, 147 (1983).
- Resasco, D. E. and Haller, G. L., J. Catal. 82, 279 (1983).
- 14. Jiang, X., Hayden, T. F., and Dumesic, J. A., J. Catal. 83, 168 (1983).
- Cairns, J. A., Baglin, E. E., Clark, G. J., and Zeigler, J. F., J. Catal. 83, 301 (1983).
- Sadeghi, H. R., and Henrich, V. E., J. Catal. 87, 279 (1984).
- Takatani, S., and Chung, Y. W., J. Catal. 90, 75 (1984).
- 18. Chung, Y. W., Xiong, G., and Kao, C., J. Catal. 85, 237 (1984).
- Belton, D. N., Sun. Y.-H., and White, J. M., J. Amer. Chem. Soc. 106, 3059 (1984).
- 20. Tauster, S. J., Fung, S. C., and Garten, R. L., J. Amer. Chem. Soc. 100, 170 (1978).
- Tauster, S. J., Fung, S. C., and Garten, R. L., J. Catal. 55, 29 (1978).
- Imelik, B., Naccache, C., Coudurier, G., Praliaud, H., Meriaudeau, P., Allezat, P., Martin, G. A., and Vedrine, J. C., Eds., *Stud. Surf. Sci. Catal.* 11 (1982).
- Tauster, S. J., Fung, S. C., Baker, R. T. K., and Horsley, J. A., Science (Washington, D.C.) 211, 1121 (1981).

- 24. Fang, S. M., and White, J. M., J. Catal, 83, 1 (1983).
- 25. Rives-Arnau, V., and Munuera, G., Appl. Surf. Sci. 6, 122 (1980).
- Resasco, D. E., and Haller, G. L., Stud. Surf. Sci. Catal. 11, 105 (1982).
- 27. Low, G., and Bell, A. T., J. Catal. 57, 397 (1979).
- Castner, D. G., Sexton, B. A., and Somorjai, G. A., Surf. Sci. 71, 519 (1978).
- Castner, D. G., and Somorjai, G. A., Surf. Sci. 83, 60 (1979).
- Baird, R. J., Ku, R. C., and Wynblatt, Surf. Sci. 97, 346 (1980).
- 31. Ho, P., and White, J. M., Surf. Sci. 137, 103 (1984).
- 32. Dubois, L. H., Hansma, P. K., and Somorjai, G. A., J. Catal. 65, 318 (1980).
- 33. Miki, H., Kioka, T., and Kawasaki, K., Surf. Sci. 121, 218 (1982).
- 34. Campbell, C. T., and White, J. M., Appl. Surf. Sci. 1, 347 (1978).
- 35. Root, T. W., Schmidt, L. D., and Fischer, G. B., Surf. Sci. 134, 30 (1983).
- Chin, A. A., and Bell, A. T., J. Phys. Chem. 87, 3700 (1983).
- 37. Baker, R. T. K., Prestridge, E. B., and Garten, R. L., J. Catal. 56, 390 (1979).
- 38. Baker, R. T. K., Prestridge, E. B., and Garten, R. L., J. Catal. 59, 293 (1979).
- 39. Baker, R. T. K., Prestridge, E. B., and Murrell, L. L., J. Catal. 79, 348 (1983).
- 40. Baker, R. T. K., Prestridge, E. B., and McViker, G. M., J. Catal. 89, 422 (1984).
- 41. Apple, T. M., Gajardo, P., and Dybowski, C., J. Catal. 68, 103 (1981).
- 42. Apple, T. M., and Dybowski, C., J. Catal. 71, 316 (1981).
- 43. Apple, T. M., and Dybowski, C., Surf. Sci. 121, 243 (1982).
- 44. Vis, J. C., Van't Blik, F. J., Huizanga, T., Van Grondelle, J., and Prins, R., J. Mol. Catal. 25, 367 (1984).